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Reinforcement Learning from Human Feedback (RLHF) has greatly improved the performance of modern
Large Language Models (LLMs). The RLHF process is resource-intensive and technically challenging, generally
requiring a large collection of human preference labels over model-generated outputs. Reinforcement Learning
from AI Feedback (RLAIF) addresses this data collection challenge by leveraging synthetic preferences generated
by an LLM. However, recent work has shown that synthetic preferences labels may not align well with human
preference judgments (Zeng et al., 2023). To address this, we propose a hybrid approach that unifies RLHF
and RLAIF methodologies. We introduce GenRM, an iterative algorithm that trains an LLM on self-generated
reasoning traces, leading to synthetic preference labels matching human preference judgments. Empirically,
we show that zero-shot LLM-based judgments under-perform compared to Bradley-Terry reward models on
in-distribution tasks (between 9-36%). In contrast, GenRM achieves in-distribution accuracy comparable to
Bradley-Terry models, while significantly outperforming them on out-of-distribution tasks (between 10-45%).
Moreover, GenRM surpasses the performance of using LLMs as judges on both in-distribution (by 9-31%) and
out-of-distribution tasks (by 2-6%). Our results show that combining the strengths of RLHF and RLAIF offers a
promising approach for improving the quality of synthetic preference labels.

1. Introduction

Reinforcement Learning from Human Feedback (RLHF) has significantly improved the performance
of modern Large Language Models (LLMs) (see e.g., Reid et al., 2024; OpenAI, 2023). Despite its
effectiveness, the RLHF process presents several challenges. First, it requires a large amount of human
preference data to train reward models that reflect human preferences (Stiennon et al., 2022; Bai
et al., 2022a). Second, it necessitates additional architecture and infrastructure to handle reward
model training (Wang et al., 2024a; von Werra et al., 2020; Havrilla et al., 2023). Third, it requires a
sophisticated online optimization loop using algorithms, such as Proximal Policy Optimization [PPO;
Schulman et al. (2017)], to fine-tune an LLM-based policy to align with the reward model (Zheng
et al., 2023c).
To address the challenge of collecting large-scale human preference data, synthetic preference data

has emerged as a promising alternative. For example, Bai et al. (2022b) introduced Reinforcement
Learning from AI Feedback (RLAIF). Instead of relying on human users for feedback, their method
utilizes an LLM guided by a predefined set of principles—referred to as a “constitution”—to generate
and select model outputs that are helpful and harmless (Askell et al., 2021). Employing AI-generated
preference labels has demonstrated meaningful Pareto improvements in balancing helpfulness and
harmlessness in assistant responses (Bai et al., 2022b; Kundu et al., 2023).
Direct alignment algorithms, such as Direct Preference Optimization (DPO) (Rafailov et al., 2023)

and Implicit Preference Optimization (IPO) (Azar et al., 2023), were developed to address the
challenges of reward model training and online optimization. These works demonstrated that the
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Figure 1: Methods overview. Bradley-Terry methods directly output the probability of 𝑦1 being
preferred over 𝑦2, while GenRM compares the LLMs next-token probabilities of answer indicator
tokens (𝐼1, 𝐼2). CoT-GenRM samples reasoning traces (𝑟) followed by the answer indicator token.

reward model and the optimal policy can be mathematically interchanged, allowing the policy to be
trained directly from preference data in an entirely offline manner, significantly simplifying the RLHF
pipeline. Benchmark evaluations (Lambert et al., 2024) have shown that DPO-based approaches
are competitive with traditional reward models based on the Bradley-Terry algorithm. However,
recent empirical evidence suggests that purely offline methods may underperform compared to online
approaches in both reward model-based reinforcement learning (Xu et al., 2024b,a) and in the RLAIF
setting (Guo et al., 2024). As a result, state-of-the-art models such as the LLaMA-3 family (Dubey
et al., 2024) have adopted hybrid strategies that combine online DPO optimization with separate
reward models.
In this work, we identify two key limitations in current alignment approaches: (1) Explicitly

parameterized reward models, while effective and accurate for in-distribution tasks, struggle with
robustness and generalization to out-of-distribution (OOD) data. (2) RLAIF approaches, such as
utilizing an LLM-as-a-judge, offer a more robust alternative but may not always align well with actual
user preferences when acting as the sole evaluator. To address these limitations, we propose a
unified framework for RLHF and RLAIF. Our approach begins with a strong pre-trained LLM, which
we employ as an evaluator. Using a dataset of user preferences, we adopt a STaR-like methodology
(Zelikman et al., 2022) to align the LLMwith user choices, effectively training it to function as a reward
model. We demonstrate empirically that this fine-tuned judge model matches Bradley-Terry reward
models for in-distribution prompts while significantly improving generalization on OOD prompts.
Additionally, it outperforms the base LLM on both in-distribution and OOD scenarios.

2. Preliminaries

In this section, we first outline the core components of the standard RLHF post-training pipeline
(Ziegler et al., 2020; Stiennon et al., 2022; Bai et al., 2022a; Ouyang et al., 2022), then summarize
the Self-Taught Reasoner (STaR) approach (Zelikman et al., 2022), and finally review LLM-as-a-judge
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(Zheng et al., 2023a).

2.1. Reinforcement Learning from Human Feedback

The RLHF pipeline consists of three stages designed to align an LLM with human preferences: (1)
Supervised finetuning (SFT); (2) Reward Modeling; and (3) Reinforcement Learning (RL).

2.1.1. Supervised Fine-Tuning (SFT)

In the first stage, an LLM is trained to follow instructions using a dataset of prompts 𝑥 and responses 𝑦
using maximum likelihood estimation (MLE) over the next-token predictions. The resulting model is
referred to as 𝜋SFT(𝑦 | 𝑥), where both the prompt and response strings are treated as single variables.
This model is used as a base for the next stages.

2.1.2. Bradley-Terry Reward Modeling

Next, the SFT model 𝜋SFT(𝑦 | 𝑥) is leveraged to construct a reward model that captures human
preferences. Specifically, the SFT model is sampled, generating pairs of responses (𝑦1, 𝑦2) ∼ 𝜋SFT(𝑦 | 𝑥)
for each prompt 𝑥 in the dataset. Human annotators then rank the responses, producing pairs of
preferences 𝑦𝑤 ≻ 𝑦𝑙 | 𝑥, where 𝑦𝑤 and 𝑦𝑙 represent the preferred and non-preferred responses,
respectively. This ranking process is typically modeled using the Bradley-Terry (BT) preference model
(Bradley & Terry, 1952), which assumes the preference distribution:

𝑝BT(𝑦1 ≻ 𝑦2 | 𝑥) =
exp (𝑟(𝑥, 𝑦1))

exp (𝑟(𝑥, 𝑦1)) + exp (𝑟(𝑥, 𝑦2))
= 𝜎 (𝑟(𝑥, 𝑦1)− 𝑟(𝑥, 𝑦2)) , (1)

where the preference distribution 𝑝 is driven by a latent reward function 𝑟(𝑥, 𝑦), and 𝜎 is the logistic
function (although other objectives can be used). Using this framework and a dataset of rankings
𝒟 =

{︁
𝑥(𝑖), 𝑦

(𝑖)
𝑤 , 𝑦

(𝑖)
𝑙

}︁𝑁

𝑖=1
, a parameterized reward model 𝑟𝜑(𝑥, 𝑦) is trained via maximum likelihood

estimation to predict the unobserved reward:

ℒrew(𝑟𝜑) = −E(𝑥,𝑦𝑤,𝑦𝑙)∼𝒟 [log 𝜎 (𝑟𝜑(𝑥, 𝑦𝑤)− 𝑟𝜑(𝑥, 𝑦𝑙))] . (2)

This reward model is based on 𝜋SFT(𝑦 | 𝑥) with an additional linear predictor on top of the final
embedding layer of the model which produces the scalar reward estimate.

2.1.3. Reinforcement Learning (RL)

In the final stage, the learned reward model 𝑟𝜑(𝑥, 𝑦) is used to further optimize the LLM 𝜋𝜑 via an
on-policy RL algorithm, such as Proximal Policy Optimization (PPO; Schulman et al., 2017). The goal
is to refine the LLM’s behavior so that it produces responses preferred by human evaluators. The
common optimization objective is:

max
𝜋𝜃

E𝑥∼𝒟,𝑦∼𝜋𝜑(.|𝑥)

[︁
𝑟𝜑(𝑥, 𝑦)− 𝛽DKL [𝜋𝜃(𝑦 | 𝑥) ‖ 𝜋ref(𝑦 | 𝑥)]

]︁
, (3)

where DKL represents the Kullback-Leibler (KL) divergence, and 𝜋ref(𝑦 | 𝑥) is typically the supervised
fine-tuned model 𝜋SFT(𝑦 | 𝑥). The KL divergence penalty prevents the LLM 𝜋𝜑 from deviating too far
from its initial behavior, with the hyperparameter 𝛽 controlling the trade-off between exploiting the
reward model and maintaining consistency with the reference model.
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2.2. Self-Taught Reasoner

The Self-Taught Reasoner (STaR) method introduces an iterative bootstrapping approach designed
to improve the reasoning capabilities of LLMs (Zelikman et al., 2022). STaR focuses on training
models to generate and refine rationales, particularly for tasks requiring complex reasoning in a
reinforcement learning-based manner. We outline the main points of the approach below.

2.2.1. Rationale Generation Bootstrapping

In our formulation we assume we have access to a dataset𝒟 = {𝑥(𝑖), 𝑦(𝑖)}𝑁𝑖=1 of questions 𝑥 that require
strong reasoning and the corresponding answers 𝑦. Notice that we do not require access to strong or
ground-truth rationales for these problems. We begin by prompting a model 𝑦(𝑖), 𝑟(𝑖) ∼ 𝜋(𝑦, 𝑟|𝑥(𝑖))
to provide CoT rationale 𝑟(𝑖) and final answer 𝑦(𝑖). We then filter the generated data, keeping only
rationales leading to a correct final answer (i.e. 𝑦(𝑖) = 𝑦(𝑖)) to generate a dataset of questions,
(bootstrapped) rationales and answers 𝒟STaR = {𝑥(𝑖), 𝑟(𝑖), 𝑦(𝑖)}𝑁𝑖=1. 𝒟STaR is then used to train a model
with the standard supervised fine-tuning objective:

ℒSTaR(𝜋𝜑) = −E(𝑥,𝑟,𝑦)∼𝒟STaR [− log 𝜋𝜑(𝑦, 𝑟|𝑥)] . (4)

The above procedure is repeated over several iterations and has since been adopted in various
related works (e.g., Hosseini et al., 2024; Andukuri et al., 2024; Fränken et al., 2024; Zelikman et al.,
2024).

2.2.2. Post-Rationalization

One limitation of bootstrapping rationale generation is that the model cannot improve on examples it
initially fails to solve. To address this issue, STaR introduces rationalization, a backward reasoning
process. For prompts where the model generates an incorrect rationale and answer, the correct answer
is provided to the model as a hint. The model then generates a new rationale based on the correct
answer, reasoning backward to generate a “post-rationale”. In technical terms there is a rationalization
model 𝑞 which generates rationales 𝑟(𝑖) ∼ 𝑞(𝑟|𝑥(𝑖), 𝑦(𝑖)) to justify the final answer. This synthetic data
is in turn used in the STaR objective in Eq. 4. We will also use this approach to evaluate the effect of
the quality of the bootstrapped reasoning chains, using samples from rationalization models 𝑞 with
different capabilities.

2.3. RLAIF and LLM-As-A-Judge

Reinforcement Learning from AI Feedback (RLAIF) presents an alternative approach to the standard
RLHF pipeline. Bai et al. (2022b) demonstrate the efficacy of RLAIF in training helpful and harmless
models without relying on human feedback labels for harmlessness assessment. Their work shows that
as language model capabilities improve, AI identification of harms increases significantly, particularly
when leveraging chain-of-thought reasoning. Notably, they demonstrate that utilizing self-supervised
preference labels for reinforcement learning can yield improvements in model behavior that are
competitive with or surpass those achieved using human feedback for harmlessness evaluation. Zheng
et al. (2023a) introduce the LLM-as-a-Judge method, further extending the RLAIF paradigm. They
demonstrate that strong language models, even without explicit training for evaluation tasks, can
provide judgments that exhibit agreement with human preferences. Their study finds that LLMs can
achieve over 80% agreement with human preferences, a level comparable to inter-expert agreement.
This finding establishes a foundation for developing LLM-based evaluation frameworks.
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3. Connections Between RLHF and Preference Modelling

We begin by pointing out a theoretical connection between the RLHF post-training approach outlined
in the previous section and general preference modeling. One of the key observations of the DPO
approach (Rafailov et al., 2023) is that the reward modeling objective in Eq. 1 is under-constrained,
which can create significant optimization challenges for the RL problem in Eq. 3 (Wu et al., 2023;
Ahmadian et al., 2024) (in fact, theoretically, it can have arbitrarily low signal-to-noise ratio). To
alleviate this issue, prior works (Stiennon et al., 2022; Ouyang et al., 2022) use a baseline reward
from on a fixed reference distribution:

max
𝜋𝜃

E𝑥∼𝒟,𝑦∼𝜋𝜑(.|𝑥)

[︁
[𝑟𝜑(𝑥, 𝑦)− 𝑟𝜑(𝑥, 𝑦ref)]− 𝛽DKL [𝜋𝜃(𝑦 | 𝑥) ‖ 𝜋ref(𝑦 | 𝑥)]

]︁
. (5)

Here the reference 𝑦ref is a human completion from an SFT dataset or a sample from the base SFT
model. However, notice that by inverting Eq. 1 we have:

𝑟𝜑(𝑥, 𝑦)− 𝑟𝜑(𝑥, 𝑦ref) = log

(︂
𝑝BT(𝑦 ≻ 𝑦ref|𝑥)

1− 𝑝BT(𝑦 ≻ 𝑦ref|𝑥)

)︂
. (6)

That is, under the Bradley-Terry formulation the standard RLHF optimization procedure is actually
optimizing a preference likelihood objective.
The core contribution of our work is that we replace the Bradley-Terry reward modelling approach

with a strictly more general preference modelling objective 𝑝(𝑦𝑤 ≻ 𝑦𝑙|𝑥) that does not assume
a point-wise reward estimate, a special model architecture, or a specific preference distribution
parameterization as in Eq. 1. That is, we assume a standard preference dataset and model the
preference distribution 𝑝𝜑(𝑦𝑤 ≻ 𝑦𝑙|𝑥) using an LLM, without any additional assumptions. Notice that
this formulation is fully general as we can extract preference probabilities either from the likelihoods
of the LLM output or from majority voting counts. This can be used in the standard pipeline with
PPO (Stiennon et al., 2022; Ouyang et al., 2022) in Eq. 5 using the reward formulation in Eq. 6.
Alternatively, if we sample preferences from the above model, we can also utilize an iterative or online
*PO optimization manner following Munos et al. (2024) or Calandriello et al. (2024).

4. Generative Reward Models: A Unified RLHF-RLAIF Approach

In our proposed framework we begin with an LLM 𝜋𝜑 acting as a zero-shot judge in an RLAIF setting,
as outlined in Section 2.3. That is, given a task 𝑥 and two responses 𝑦1 and 𝑦2, we directly prompt
the model 𝜋𝜑 to provide an answer indicator token 𝐼 indicating a preference over the answers. We
consider two variants of our approach:

1. The Generative Reward Model (GenRM) approach prompts the model to act as a classifier
directly providing the answer token probabilities for each response 𝐼 ∼ 𝜋𝜑(𝐼, |𝑥, 𝑦1, 𝑦2).

2. The CoT-GenRM approach additionally prompts the model to provide intermediate Chain-of-
Thought reasoning 𝐼, 𝑟 ∼ 𝜋𝜑(𝐼, 𝑟|𝑥, 𝑦1, 𝑦2) before providing the final answer indicator token.

Our prompts are based on the standard MT-Bench prompt (Zheng et al., 2023b), and can be found
in Appendix A. We use the LLM judge as a prior and further train it to align with the ground-truth
dataset judgements. We begin with the preference dataset 𝒟 =

{︁
𝑥(𝑖), 𝑦

(𝑖)
1 , 𝑦

(𝑖)
2 , 𝐼(𝑖)

}︁𝑁

𝑖=1
as outlined

in Section 2.1.2, however we consider unranked answers 𝑦(𝑖)1 , 𝑦
(𝑖)
2 and the corresponding winning

choice 𝐼(𝑖). We design several training techniques for the generative reward model𝜋𝜑.
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GenRM (no CoT): To train the GenRMmodel, we use the standard supervised fine tuning objective
ℒGenRM(𝜋𝜑) = E(𝑥,𝑦1,𝑦2,𝐼)∼𝒟[− log 𝜋𝜑(𝐼|𝑥, 𝑦1, 𝑦2)] (7)

essentially using the LLM as a classifier trained with next-token prediction.
CoT-GenRM with Rationalization: To train the CoT-GenRM we will also consider two settings—

bootstrapping intermediate reasoning from ground-truth or, potentially, a stronger rationalization
model 𝑟 ∼ 𝑞𝜑(𝑟|𝑥(𝑖), 𝑦

(𝑖)
1 , 𝑦

(𝑖)
2 ). We can then train the model with maximum likelihood over both the

reasoning chain and ranking:
ℒGenRM-Rationalization(𝜋𝜑) = E(𝑥,𝑦1,𝑦2,𝑟,𝐼)∼𝒟[− log 𝜋𝜑(𝐼|𝑥, 𝑦1, 𝑦2, 𝑟)− log 𝜋𝜑(𝑟|𝑥, 𝑦1, 𝑦2)] (8)

we refer to this as a post-rationalization approach, similar to the approach described in Section 2.2.2.
CoT-GenRM-STaR: Finally we consider an approach where the model self-bootstraps intermediate

reasoning using a STaR approach as outlined in Section 2.2.1. We will also consider two loss objectives
here—following the filtering strategy described in the above section, we use the standard SFT loss
similar to Eq. 8 on reasoning chains that yield the correct judgement. We denote models trained with
this objective as STaR-SFT.
Alternatively, we would like to utilize all the sampled data, including reasoning chains that yield

wrong judgments. Similar to the reasoning approach in Pang et al. (2024) we create a dataset of
preference pairs 𝒟 = {𝑥(𝑖), 𝑦(𝑖)1 , 𝑦

(𝑖)
2 , 𝑟

(𝑖)
𝑤 , 𝐼

(𝑖)
𝑤 , 𝑟

(𝑖)
𝑙 , 𝐼

(𝑖)
𝑙 }, where 𝑟𝑤 are rationales that lead to correct

rankings 𝐼𝑤 and 𝑟𝑙 are rationales that lead to incorrect rankings 𝐼𝑙. We then use a DPO optimization
objective of the form:

ℒGenRM-DPO(𝜋𝜑) = E𝒟

[︂
log 𝜎

(︂
𝛽 log

𝜋𝜑(𝐼𝑤, 𝑟𝑤|𝑥, 𝑦1, 𝑦2)
𝜋ref(𝐼𝑤, 𝑟𝑤|𝑥, 𝑦1, 𝑦2)

− 𝛽 log
𝜋𝜑(𝐼𝑙, 𝑟𝑙|𝑥, 𝑦1, 𝑦2)
𝜋ref(𝐼𝑙, 𝑟𝑙|𝑥, 𝑦1, 𝑦2)

)︂]︂
. (9)

We denote models trained with this objective as STaR-DPO.

5. Experiments

In this section we evaluate the performance of our proposed Generative Reward Modelling approaches
as compared to classical Bradley-Terry reward models (Bradley & Terry, 1952), a more recent reward
variant called PairRM (Jiang et al., 2023), as well as zero-shot RLAIF evaluation. All models are based
on the LLaMa-3.1-8B-Instruct model (Dubey et al., 2024).
We consider two separate training datasets: UltraFeedback (Cui et al., 2023), a large-scale

feedback dataset of 61k pairs focusing on general instruction following, and UltraInteract (Yuan
et al., 2024b), a dataset consisting of multi-turn reasoning trees focusing on math, code and logic,
including advanced capabilities such as tool use and environment interaction. We evaluate models on
each training dataset as well as on RewardBench (Lambert et al., 2024), a general reward modeling
benchmark which consists of four subsets—Chat, Chat (Hard), Reasoning, and Safety. Full training
details can be found in Appendix A.
In our experiments we evaluate the following questions:

1. Do generative reward models match the performance of classical reward models?
2. How robust are reward models and how well do they generalize to OOD data?
3. Does reasoning improve reward modelling and can we use inference time compute to improve
results?

4. Do we need strong reasoning data to train generative RMs or can we bootstrap the reasoning
from the model itself?
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Figure 2: Comparing generative reward models with prior reward modeling methods on in-
domain (UltraFeedback) data and out-of-domain data (RewardBench). All generative model scores
are the result of a majority vote over 32 samples.

5.1. Performance of Generative RMs on General Assistant Tasks

We show our first main set of results in Fig. 2. All models are trained on the UltraFeedback dataset
and evaluated on a held-out split of in-domain data as well as on RewardBench.
We first evaluate the zero-shot performance of the LLaMa 3.1 8B Instruct model as an evaluator

using both CoT prompting with self-consistency (LLM-as-a-judge in Figure 2) and acting as a classifier
directly outputting the response ranking (GenRM (base) in 2). We see that using that prompting the
model to reason over the answers significantly boosts performance from 52.25% to 67.75% on the
UltraFeedback evaluation dataset and from 60.60% to 75.18% accuracy on RewardBench.
However, when we compare the zero-shot methods with trained models, we find that both

approaches substantially under-perform the Bradley-Terry RM, PairRM and trained GenRM models
which all have comparable accuracies, around 73-74%. We see that the STaR-DPO model also matches
these accuracies in-distribution at 73.9%. On the other hand, the STaR-SFT model achieves in-
distribution accuracy of only 67.4%, which essentially shows no change of performance compared to
the base LLM.
When we evaluate these models on out-of-distribution tasks (RewardBench) we see that STaR-DPO

achieves the strongest result, over both the base model prior (81.9% versus 77.8%) and trained
RM with the GenRM having the stronger performance at 78.9%. The STaR-DPO model outperforms
or matches baselines across all RewardBench categories. On the other hand, the STaR-SFT model
still does not substantially differ from the base model. The GenRM model outperforms the Bradley-
Terry RM and PairRM with performance comparable to STaR-DPO across Chat, Chat (Hard) and
Reasoning. However, one notable observation is that reasoning-based approaches show significantly
stronger performance on the Safety category with the STaR-DPO model achieving 91.0% accuracy
versus the best performing PairRM model, which achieves accuracy of 81.8%. Figure 3 demonstrates
an interesting case where LLM-as-a-judge fails to accurately judge a general assistant task but the
STaR-DPO model suceeds. The STaR-DPO model response recognizes that Assistant A’s response
“lacks depth and detail”, but correctly recognizes that Assistant B’s response does not follow the
instruction and prefers Assistant A’s response. To the contrary, the LLM-as-a-judge response repeatedly
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Prompt
User: Name two animal species that live in the
ocean.
[The Start of Assistant A’s Answer]
Dolphin and shark.
[The End of Assistant A’s Answer]
[The Start of Assistant B’s Answer]
Common ocean animals include sharks, whales, and
dolphins.
[The End of Assistant B’s Answer]

STaR-DPO
For the user’s question, which is to name two animal
species that live in the ocean, we have responses
from two assistants.

Assistant A’s response is "Dolphin and shark."
Although it names two species that live in the ocean,
it lacks depth and detail. The response does not
provide further information about the species, and
it only mentions two examples.

Assistant B’s response is "Common ocean animals
include sharks, whales, and dolphins." This response
is more detailed and provides additional information
about the types of ocean animals. However, the
question specifically asks for two species, and
Assistant B’s response names three species.

Considering the user’s question, I would say that
Assistant A’s response is more suitable because it
directly answers the question by naming two animal
species that live in the ocean.

[[A]]

LLM-as-a-judge
To compare the two responses, let’s consider the
factors mentioned earlier.

Helpfulness: Both responses provide the user
with two (in the case of Assistant A) or more (in
the case of Assistant B) ocean-dwelling animal
species. However, Assistant B provides a more
comprehensive list of common ocean animals, which
could be more helpful to the user.

Relevance: Both responses are directly related to
the user’s question about ocean-dwelling animal
species.

Accuracy: Both responses are accurate in providing
examples of ocean-dwelling animals. However,
Assistant B provides a more specific list of common
ocean animals.

Depth: Assistant B’s response is more detailed,
providing a list of common ocean animals, while As-
sistant A’s response is more concise but less detailed.

Creativity: Both responses are straightforward and
do not show much creativity.

Level of detail: Assistant B’s response provides
more detail by listing specific ocean animals, while
Assistant A’s response is more general.

Overall, considering the factors above, Assistant B’s
response provides more helpful and detailed informa-
tion, making it a better choice for the user’s question.

[[B]]

Figure 3: An example where LLM-as-a-judge fails to provide an accurate judgement, but STaR-DPO
succeeds. Sentences where critical reasoning takes place are bolded for emphasis.

emphasizes how Assistant B’s response is more helpful and detailed, even though the user requests a
short list of 2 animals, incorrectly preferring Assistant B’s response.
Overall, we see that the STaR-DPO reasoning model matches the best performance on the in-

distribution dataset and has the strongest out-of-domain generalization across evaluation categories
on RewardBench.

5.2. Performance on Reasoning Tasks

We also evaluate performance specifically on reasoning tasks by training models on the UltraInteract
dataset, which specifically focuses on challenging evaluations of reasoning chains. The experiments
in this section focus on meta-reasoning, i.e. the capability to reason about reasoning steps. Figure 4
shows that the STaR-DPO model outperforms STaR-SFT on the UltraInteract evaluation dataset and
achieves a significant improvement of 90.2% versus 68.8% for the base model. This is slightly lower
than the explicit RM models, which all achieve comparable performance around 94%. However,
we see an interesting divergence on the RewardBench evaluation. For this experiment we show
performance on the Reasoning category in RewardBench versus all other categories. We see that the
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Figure 4: Comparing generative reward models with prior reward modeling methods on in-
domain (UltraInteract) data and out-of-domain data (RewardBench) split into reasoning and non-
reasoning subsets. All generative model scores are the result of a majority vote over 32 samples.

Bradley-Terry RM, PairRM, and GenRM struggle to generalize to the RewardBench data, with the
Bradley-Terry model scoring worse than random and the best performing GenRM model achieving
70.8% accuracy, which is worse than the LLM-as-a-judge performance at 76.6%. On the other hand the
STaR-DPO significantly outperforms both baselines with 87.2%. This shows that the model successfully
generalizes the meta-reasoning capabilities from the training dataset to a different distribution of
reasoning prompts and answers. Additionally, on the non-reasoning evaluations in RewardBench,
unsurprisingly the LLM-as-a-judge achieves the strongest result with 78.0% accuracy, while all explicit
reward models struggle to generalize to these tasks and distributions. At the same time STaR-DPO
only suffers a small loss of accuracy on these domains at 75.0%.

5.3. Bootstrapping Rationales
Bootstrap Source UltraFeedback RewardBench

Llama3.1 8B
68.63 77.34
67.68 77.61
67.38 77.05

Llama3.1 70B
70.50 77.09
70.13 68.78
69.58 63.43

GPT-4
62.85 69.58
68.55 75.63
71.73 78.29

GPT-4 (full) 62.60 70.52

Table 1: Bootstrapping STaR-SFT with models
of different capabilities. All methods train a
Llama3.1 8B model using rejection sampling from
the bootstrap source. Only the first iteration of
data comes from the bootstrap source. GPT-4 (full)
is trained entirely on the reasoning from GPT-4.
Scores are majority vote over 32 samples.

Based on the prior experiments we observe
that the STaR-DPO model significantly outper-
forms the base LLM-as-a-judge, but also the
GenRM model which does not use reasoning
on held out tasks in RewardBench. One ma-
jor variable is how to generate the reasoning
chains used for training. In the experiments
described so far rationales were sampled follow-
ing a STaR-based approach using the same base
model. We also evaluate an approach sampling
rationales from a post-rationalization model
𝑟 ∼ 𝑞𝜑(𝑟|𝑥, 𝑦1, 𝑦2, 𝐼), which are then used for
SFT training using Eq. 8, we refer to this as
STaR-Rationalizer. Results from this approach
on UltraFeedback are shown in Fig. 2 and for
UltraInteract in Fig. 4. Interestingly we observe
that the STaR-Rationalizer model matches the
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performance of the STaR-DPO model on both datasets, significantly out-performing the STaR-SFT
approach, which uses the same training objective. However, we see that this model struggles to
generalize to the RewardBench tasks, under-performing not only the STaR-DPO model, but the base
LLM as well on both datasets. This is an interesting empirical phenomenon that warrants further study,
but we hypothesize that the core issue is that the training rationales from the post-rationalization
model are off-policy for the base model, creating a distribution mismatch during training. While the
model is able to learn those rationales on the training distribution it fails on more novel tasks where
it generates rationales different from those seen during training.
We show additional evaluations in Table 1 using different models to bootstrap reasoning on the

UltraFeedback domain. We see similar results to the above when using rationales generated by a a
strong GPT-4 model, which significantly under-performs the standard STaR methods, however this
is alleviated with additional on-policy training. Finally we see that bootstrapping reasoning with
samples from the stronger LLaMa 3.1 70B Instruct model from the same family slightly improves
performance on UltraFeedback, but leads to somewhat worse generalization to RewardBench. Our
results indicate that on-policy training of the critic models can meaningfully impact performance.

5.4. Using Inference-Time Compute

In addition to the previously discussed benefits, using LLMs as reward models also allows us to utilize
additional inference time compute to improve performance. Indeed our results from the previous
sections show that using COT prompting to induce reasoning in the evaluator model can significantly
improve performance on new prompts and tasks over the base GenRM approach (which does not
use CoT). In this section we show further results on accuracy using self-consistency and majority
voting. Our results are shown in Fig. 5. We see that majority voting at 32 improves performance
consistently and adds 1.6% accuracy on the UltraFeedback Dataset and 3.8% on RewardBench in that
case. On UltraInteract majority voting improves performance by 4.6% and 4.9% on RewardBench.
This indicates that "System 2" types of reasoning approaches can significantly improve the accuracy of
the critic model. We believe using models with strong reasoning to provide feedback and evaluation
to other models is a promising direction.

6. Related Work

The concept of using language models for providing feedback, also known as constitutional AI or
RLAIF Bai et al. (2022b) has gained significant traction in recent years. Zheng et al. (2023b) further
popularized the paradigm of LLM evaluation ("LLM-as-a-judge"), demonstrating that strong language
models can effectively perform judgments with chain-of-thought (CoT) reasoning that approximate
human evaluation. Building on this, Kim et al. (2024) proposed Prometheus, employing supervised
fine-tuning from a powerful model to provide CoT reasoning and scoring, demonstrating strong
evaluation performance from a smaller open model. In the current work we show that zero-shot
LLM evaluations may not fully align with human feedback and significant improvements in accuracy
can be gained from additional fine-tuning. Moreover, in our proposed approach of combining RLAIF
with STaR-based tuning we do not require ground-truth reasoning or supervision from a stronger
model. Concurrently with this work, Zhang et al. (2024) presented Generative Verifiers, training
CoT-GenRM with an SFT objective to act as a verifier for mathematical reasoning. They find similiar
observations to our experiments in Sections 5.2 and 5.4. However, one notable exception is that unlike
our approach they rely on access to full reference solutions at training time. Another concurrent work
in this direction is Ankner et al. (2024), which combines CoT reasoning generation with Bradley-
Terry reward modelling. They present empirical findings on the benefits of reasoning, similar to the
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Figure 5: Comparing generative reward models with prior reward modeling methods with
majority vote evaluation. Top row models are trained on UltraFeedback (Cui et al., 2024), and
bottom row models are trained on UltraInteract (Yuan et al., 2024a). Left column models are
evaluated on either UltraFeedback or UltraInteract, and right column models are evaluated on
RewardBench (Lambert et al., 2024). Solid line methods are sampled to produce final answers and
shading reflects a 95% confidence interval.

ones we show in Section 5.1, although crucially, they rely on a separate strong model to provide
rationales and require the Bradley-Terry reward model hybrid architecture, while we use fully self-
bootstrapped rationales in a full language modelling setup without the need for any additional
architecture overhang.
A number of concurrent works have also proposed approaches for self-bootstrapping generative

critics. In Wang et al. (2024c), the authors present an approach similar to our STaR-SFT method using
data augmentation to create synthetic preference pairs. On the other hand Wu et al. (2024) instead
uses DPO for optimizing the evaluator, but the feedback is based on additional meta-judge evaluator.
Similarly, Wang et al. (2024b) also generates data using a number of augmentation techniques and
deploys DPO training. We note that these data generation techniques are complementary to our
approach which focuses on using STaR-based methods to allign LLM generative reward models and
replace explicit reward models.
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7. Conclusion

To conclude, this work introduces Generative Reward Models (GenRM) as a novel framework that
combines the strengths of Reinforcement Learning from Human Feedback (RLHF) and Reinforcement
Learning from AI Feedback (RLAIF) to improve preference modeling for large language models (LLMs).
By leveraging self-generated reasoning traces and iterative training loops, GenRM can fine-tune LLMs
to better align with human preferences, addressing key limitations of both human and AI feedback
mechanisms. The GenRM approach demonstrates that integrating chain-of-thought reasoning within
preference modeling can significantly improve both in-distribution and out-of-distribution performance
compared to baselines. The Chain-of-Thought (CoT) GenRM variant augments preference judgment
tasks with intermediate reasoning traces, boosting model performance by encouraging more logical,
step-wise decision-making. This leads to better generalization on complex tasks such as reasoning and
safety-related scenarios. Empirical results show that GenRM and its variants maintain competitive
in-distribution accuracy while outperforming traditional methods on out-of-distribution tasks. Notably,
STaR-DPO models, which rely on reasoning-based preference optimization, demonstrate superior
robustness and performance across benchmarks. In summary, Generative Reward Models present a
significant advancement in combining human and AI feedback to enhance the quality of synthetic
preference labels. It improves scalability, out-of-distribution generalization, and model performance.
Future exploration into online optimization, robust reasoning, and adaptation to multimodal tasks
will be key to realizing the full potential of this framework in practical deployments.
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A. Additional Experiment Details

A.1. Prompts

Our prompts follow Zheng et al. (2023a) with the following differences. For our LLM-as-a-judge and
STaR (Figure 6), we remove the tie. For GenRM (Figure 8), we remove the brackets, and remove
the explanation request in the system prompt. For Rationalizer (Figure 7), we remove the output
instructions from the system prompt, and add a prompt to explain why A or B is better.
All prompts are using llama 3.1 instruct chat templates to format the prompts

System:
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to
the user question displayed below. You should choose the assistant that follows the user’s instructions and
answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the
two responses and provide a short explanation. Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After
providing your explanation, output your final verdict by strictly following this format: "[[A]]" if assistant A is
better, "[[B]]" if assistant B is better

User:
[Chat Context]
{chat}

[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

Figure 6: Prompt structure for LLM-as-a-Judge and STaR-SFT/DPO methods

A.2. Hyperparameters

A.2.1. Training Hyperparameters

Models use the same hyperparameters across each dataset. Table 2 contains our hyperparameter
choices for each training method.

A.2.2. Generation Hyperparmeters

All models use the following settings for generation:

• SGLang version: 0.3.0 (Zheng et al., 2024)
• Temperature: 1.0
• Top-p: 0.95
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System:
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to
the user question displayed below. You should choose the assistant that follows the user’s instructions and
answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the
two responses and provide a short explanation. Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

User:
[Chat Context]
{chat}

[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

Explain why response (A/B) is better than response (B/A).

Figure 7: Prompt structure for generating rationals for rationalizer methods

System: Please act as an impartial judge and evaluate the quality of the responses provided by two AI
assistants to the user question displayed below. You should choose the assistant that follows the user’s
instructions and answers the user’s question better. Your evaluation should consider factors such as the
helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Avoid any position
biases and ensure that the order in which the responses were presented does not influence your decision.
Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the
assistants. Be as objective as possible. Output your verdict by strictly following this format: "A" if assistant A
is better, "B" if assistant B is better

User:
[Chat Context]
{chat}

[The Start of Assistant A’s Answer]
{answer_a}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{answer_b}
[The End of Assistant B’s Answer]

Figure 8: Prompt structure for GenRM methods
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Model AdamW LR AdamW
(𝛽1, 𝛽2)

Optimizer
Weight Decay

Optimizer
Schedule LR warmup 𝛽

STaR-SFT 1.0e-6 n/a
STaR-DPO 1.0e-6 1.0
STaR-SFT Rationalizer 2.0e-5 n/a
STaR-IPO Rationalizer 1.0e-6 (0.9, 0.95) 0.1 cosine 0.1 0.4
Bradley-Terry RM 1.0e-6 n/a
GenRM 1.0e-6 n/a
PairRM 1.0e-6 n/a

Table 2: Hyperparameters for different models.

A.3. STaR Iterations

For each training run, we only sample from each pairwise data point one time. We split each dataset
into three equal portions, and then apply the model to one of these splits without reusing any splits.
We do not share any data between iterations, each iteration is fully sampled from the split, and does
not include any of the previously generated data into the training. To generate the new data points,
we sample from the latest model on the current split. From there, we train the latest model on that
split in an online manner. In order to accomplish roughly the same number of training steps for each
dataset, ultrafeedback uses 3 epochs from this generated data, while ultrainteract uses 1 epoch on
this data.

B. Results Across Iterations

Training Dataset UltraFeedback UltraInteract

Evaluation Dataset UltraFeedback RewardBench UltraInteract RewardBench
Method (iteration) Maj@1 Maj@32 Maj@1 Maj@32 Maj@1 Maj@32 Maj@1 Maj@32
STaR-SFT (1) 67.42 68.62 76.10 77.34 72.33 75.03 72.33 74.20
STaR-SFT (2) 67.05 67.67 75.71 77.60 76.26 79.18 72.95 74.52
STaR-SFT (3) 66.10 67.38 75.48 77.05 78.10 80.10 70.45 72.03
STaR-DPO (1) 69.30 71.28 78.29 81.27 82.23 86.46 73.13 78.04
STaR-DPO (2) 71.70 72.98 78.46 81.94 84.70 88.40 76.31 79.92
STaR-DPO (3) 72.08 73.58 79.23 82.60 85.58 90.23 74.36 79.20
Rationalizer (1) 70.90 73.05 71.73 75.83 84.31 85.11 67.04 68.61
Rationalizer (2) 71.05 73.62 68.54 71.91 88.19 88.55 60.28 61.37
Rationalizer (3) 71.23 73.22 67.62 69.48 90.39 90.77 58.19 58.16

Table 3: STaR method evaluation results throughout training iterations.
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